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A model equation is derived for the combined longitudinal and lateral dispersion of 
a buoyant contaminant in open-channel flow. The central hypotheses are that the 
water is shallow and that to  a first approximation the effluent is vertically well mixed. 
The model includes allowance for the reduction in turbulent intensity due to weak 
vertical stratification, a buoyancy-driven secondary flow, and the redistribution of 
longitudinal momentum by the secondary flow. For a plume the theoretical results 
for the excess spreading due to buoyancy agree well with Prych’s (1970) experimental 
results. 

1. Introduction 
In  studies of thermal and of sewage emuent discharges it is natural to regard the 

flow field as being comprised of several zones with distinctive properties, particularly 
in terms of the consequences of the discharge being buoyant. For an outlet in a shallow 
river or estuary a typical division would be: a near field with predominant influence 
of the outfall geometry and for which vertical stratification can inhibit vertical 
mixing (figure 1);  a middle field with lateral mixing enhanced by a buoyancy-driven 
secondary flow (figure 2); and a far field in which the contaminant distribution has 
become almost uniform across the channel, though there may still be sufficient lateral 
density variation to  drive a significant secondary flow and there can also be changes 
in the longitudinal current which can be interpreted as being part of a horizontal 
circulation (figure 3). I n  recent years there has been considerable progress in the 
development and verification of mathematical models appropriate to each of these 
zones (e.g. Lee, Jirka & Hartleman 1974; Prych 1970; Imberger 1976). However, the 
simplifying assumptions used in the derivations of the model equations are mutually 
exclusive (i.e. the neglect of the dominant features of the adjacent zones). Thus 
problems remain as to  the transition between the zones (Abraham 1976). One possible 
means of progress is to relax the assumptions and thereby extend the range of validity 
of the separate models. 

Here the model which we seek to extend is that  due to Prych (1970) for lateral 
mixing of a buoyant contaminant in open-channel flow (i.e. for the middle field). 
Specifically, we assume that in the absence of buoyancy there is steady unidirectional 
flow in a wide channel of constant depth. Moreover, we shall restrict our attention to 
regions of the flow in which the effluent has become vertically well mixed. 

I n  a critical assessment of his model equation, Prych (1970) adjudged the main 
shortcoming to be the neglect of the effects of longitudinal velocity gradients and of 
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FIGURE 1. Longitudinal section illustrating the near field. 
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FIGURE 2. Cross-section illustrating the secondary flow. 

vertical st.rat,ification upon the secondary flow. He argued that the longitudinal 
current carried with it lateral momentum from upstream regions of strong secondary 
flow to downstream regions of weaker flow. Also, the secondary flow induces weak 
vertical stratification (see figure 2), which reduces the turbulent intensity. Both these 
near-field effects tend to increase the secondary flow and hence to increase the width 
of a plume. This would help to  explain the fact that  Prych’s theory consistently under- 
estimated the excess spreading due to  buoyancy. 

The original intention of the present work was to  take up these suggestions and 
to  extend the validity of Prych’s middle-field model back towards the near field. 
However, i t  turns out that  there are closely related, physical effects which continue 
to be important further into the middle field other than those suggested by Prych. 
I n  the outer part of a buoyant plume the secondary flow carries with i t  longitudinal 
momentum from the free surface down towards the channel bed. Also, throughout 
the plume the stratification reduces the turbulent intensity and therefore reduces 
the local flow resistance to  the downstream pressure gradient. These two effects tend 
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to  increase the longitudinal current locally. The strength of this excess current de- 
creases downstream and, in order to preserve the total volume of water, there must 
be a horizontal circulation as sketched in figure 3. Locally this circulation is outward 
and so we again predict an increased width for a buoyant plume. 

The mathematical analysis, which leads to  the above identification of the dominant 
physical mechanisms, is based upon the use of maximum-generality scalings. That is, 
we identify a regime, for the geometrical and flow parameters, in which the features 
retained by Prych (197O), and as many as possible additional features, have a leading- 
order effect upon the evolution of the contaminant distribution. In  adjacent parameter 
regimes the physics are simpler but are correctly described by the model equation, 
the negligible physical effects merely corresponding to numerically insignificant 
terms. By construction, the union of the adjacent parameter regimes is the maximal 
extension of the range of validity of a middle-field model. 

The model equation thus obtained takes the form 

Here x and y are distances in the longitudinal and lateral directions, h is the (constant) 
water depth, jlclj the vertically averaged concentration, l]do)l1 the (constant) bulk 
velocity in the absence of the effluent, @ a stream function for the buoyancy-driven 
horizontal circulation, and E ,  D, and K are dispersion coefficients. The presence of 
the off-diagonal term D, in the dispersion matrix simply means that the directions 
for maximum and minimum dispersion are not aligned along and across the channel. 
This is due to there being vertical shear associated with both the primary current 
and the secondary flow (see figure 4). 

If the undisturbed velocity profile is logarithmic with friction velocity u*, then the 
coefficients in the model equation (1) are found to be 
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FIGURE 4. Perspective view of a concentration contour when there is shear flow 
in two directions. 

Here ag is the reduced gravity (positive for a buoyant contaminant), y = y- denotes 
the left-hand side of the channel (viewed from upstream) and the overbars indicate 
cross-sectional average values. For an extremely wide channel we can set y- = -co 
and neglect the averaged terms. 

I n  the limit of no y dependence (i.e. a very wide contaminant distribution) (1) 
becomes 

at llcll+ lW0)Il a, llcll = Ilcll), 

in agreement with the work of Elder (1959). Similarly, if we first convert to  axes 
moving with the bulk velocity and then neglect all II: derivatives, (1) takes the form 

a, llcll = a,([oo+ (“ga, lIc11)2~21 a, Ilcll). (3) 

This is the Erdogan-Chatwin (1967) equation, which was derived in the present 
physical context by Prych (1970). However, the nonlinear coefficient D, given by 
(2c) is over three times as large as that calculated by Prych for laminar flows. This 
change alone goes a long way towards explaining the disparity between Prych’s 
(laminar) theory and his (turbulent) experiments. 

The new equation ( 1 )  has terms which are not present in either of the two previously 
studied limits. As has been noted above, B, is related to the vertical shear in both the 
longitudinal current and the buoyancy-driven secondary flow. The two integral terms 
in the expression ( 2 4  for the horizontal circulation show the effect of the reduced 
turbulent intensity, while the derivative term is associated with the redistribution of 
longitudinal momentum by the secondary flow. 
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Approximations to the full model equation are sought, first on the basis of the fact 
that  the friction velocity u* is commonly very small relative to the bulk velocity 
I/ufo)/l, then, for the particular case of a steady plume in an extremely wide channel, 
on the basis of the further assumption that the contaminant distribution is nearly 
Gaussian. An ordinary differential equation is obtained for the standard deviation 
of a plume. For strongly buoyant narrow plumes, with predicted and measured 
Richardson numbers in excess of 0-25, the theory underestimates the dispersion. 
Presumably this is attributable to additional physical mechanisms, such as lateral 
gravity currents spreading out across the free surface (or channel bed), which are 
not represented in the vertically averaged middle-field equations. However, the 
greater part of Prych's (1970) experiments are compatible with the hypothesis of 
efficient vertical mixing. For these wider, less buoyant plumes there is good agree- 
ment between theory and experiment. 

2. Choice of scalings 
As the starting point for our mathematical analysis we take the channel to be 

straight and of constant depth; turbulent transports are represented by eddy- 
diffusivity tensors with principal axes in the longitudinal, lateral and vertical direc- 
tions; and we make the Boussinesq approximation, in which we include the buoyancy 
effect due to density variations but neglect the associated inertia variations. Thus, 
written in full, the equations of motion and boundary conditions are 

atu fua,u + va,u +wa,u + a, p - a 

atv + ua,v + va,v + wa,v + a, p 

atw + uaxw + va, + wa, + a, p - agc 

a,u+a,v+a,w = 0, (4e )  

u = v = w = K ~ ~ , C  = 0 on z = -h, (4f 1 
v12a,u = v,,a,v = w = K3azc = 0 on z = 0, ( 4 d  

Ri = a g a , ~ / [ ( a , u ) ~ +  with K~ = K ~ ( R ~ ) ,  vii = vii(Ri). (4h) 

= ~ X ( 2 V l l ~ , U )  + a,[V,,(a,u+ axv)l +az[v13(aZU+ 8ZW)l ,  (4b) 

= az[v12(a,u+ + ay(2v222yv)  + a Z [ v 2 3 ( a Z v +  (4c) 

= ax[v13(asu+ a x w ) l + a ~ [ v 2 3 ( a z v + a ~ w ) l + a z ( 2 v ~ 3 a ~ w ) ,  (4d)  

Here (z, y, z )  are distances in the longitudinal, lateral and vertical directions, (u, v, w) 
are the corresponding velocity components, K~ and vii are the eddy diffusivities for 
concentration and momentum, G is the pressure gradient which drives the basic 
flow, p the pressure perturbation, h the constant water depth, c the concentration, 
ag the reduced gravity (positive for a buoyant contaminant) and Ri the gradient 
Richardson number. 

Our objective is to achieve the simplifications of (4) implicit in the concept of the 
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middle field, with a minimum loss of generality. Physically, the main feature that 
distinguishes the middle field from the near field is that  the effluent distribution has 
become vertically well mixed. This is not a condition which can readily be used as 
the basis of a mathematical analysis. Instead, we follow Prych (1970) and impose 
the requirement that  the lateral scale B of the concentration distribution greatly 
exceeds the water depth scale H ,  i.e. that  the ratio 

S = H / B  (5) 

be small. To infer the absence of strong vertical concentration gradients we need the 
further mild restriction that the lateral and vertical turbulent diffusion coefficients 
are of the same order. It follows that, in the time necessary for the effluent discharge 
to achieve the width B, the vertical concentration variation will have become of 
order S or less. Indeed, if it were not for vertical non-uniformities of the current, the 
vertical concentration gradient would be exponentially small. 

An immediate implication of the efficient vertical mixing is that  to the first approxi- 
mation the effluent is carried along a t  the vertically averaged velocity IIuII. This 
basic state involves no dispersion. Thus, as was first explicitly recognized by Taylor 
(1953), the dispersion depends upon various small effects such as the residual vertical 
concentration gradient. Here we hope to include the transverse turbulent diffusion, 
a density-induced secondary flow and as many as possible additional effects. The 
mathematical device which facilitates the achievement of this aim is the precise 
specification of the S-ordering of the many terms with respect to the basic dimensional 
quantities H and IIuII. 

The original method by which the author derived the parameter regime of interest 
was by commencing with arbitrary scalings and then assuming that more and more 
physical effects have a leading-order effect upon the evolution of the contaminant 
distribution until the scalings became fully determined. The same results can be 
derived more systematically by following through the somewhat lengthy argument 
symbolized in figure 5. 

Suppose that the turbulent diffusivities are of order H(lullSB, where /3 is to be deter- 
mined. The secondary flow augments the lateral turbulent diffusion by a (lateral) 
shear dispersion coefficient with the dimensional form 

H 2  11v2 I I/% S-BH 1b2 I I /  I Iu II 
(Taylor 1953), where v is the lateral velocity and K~ the vertical diffusivity for the 
contaminant. For this shear dispersion to have an effect upon the evolution of the 
contaminant distribution comparable to that of the turbulent field lateral diffusivity 
K ~ ,  it is necessary that the lateral velocity scale for the density-driven secondary flow 
he of order llu11SP. Next, we assess the density variations necessary to  maintain this 
secondary flow. From the lateral momentum equation we infer that avp is of order 
PP//ullZ/H and hence that the pressure perturbation p is of order 82fl-11ju112. A hydro- 
static approximation to the vertical momentum equation ( 4 4  reveals that  this 
pressure is associated with a contaminant concentration of order unity provided that 
the reduced gravity ag is of order S2P-111u112/H. From the diffusion equation (4a )  we 
find that the vertical non-uniformity of the secondary flow leads to a vertical con- 
centration gradient of order & / H .  Together the estimates of ag and 8,c permit us to  
deduce that the Richardson number is of order S2P. (Here we have made the mild 
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assumption that /3 2 0 in order to neglect the (azw)2  influence upon the value of Ri.) 
For weak stratification the reductions in the turbulent transports from their non- 
stratified values are known to be proportional to the Richardson number. Equiva- 
lently, the fractional increase in the longitudinal or lateral velocities for a given 
horizontal pressure gradient is proportional to Ri. The implied change in the lateral 
velocity is of order llu1163fl. Similar small velocity changes are caused by u8,v con- 
vective derivatives in the lateral momentum equation (4c), provided that the longi- 
tudinal length scale is of order H6-8-l. (It happens that this is precisely the length 
scale for which the two further effects of longitudinal shear dispersion and longitudinal 
density-driven currents become important.) Unlike the dominant (secondary flow) 
contribution to the lateral velocity, these additional (horizontal circulation) velocity 
perturbations need not have zero vertical averages. Thus there can be an associated 
lateral drift of the concentration distribution. With a lateral diffusivity of order 
hjlulldp it takes a time scale of order 6-I-2H/llujl for the contaminant distribution to 
achieve a width of order 6-1H. In  this length of time the drift velocities lead to lateral 
displacements of HCY~I-~.  This is comparable to the width scale of the contaminant 
distribution provided that /3 = +. Having a t  last determined /3, we can follow through 
the argument once more and evaluate the maximum-generality scalings for the 
numerous terms. 

Summing up the results of either the original ad hoc or the above deductive argument 
(and ignoring the dimensional H and llull factors) we have the following: the eddy 
diffusivities and the lateral velocities are of order 64; the reduced gravity is of order 

Buoyancy driven 

v 
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dispersion f i Z P - 1  620 - 
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I 
$. 'I 
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unity; the width is by definition of order 8-1; the longitudinal extent of the contaminant 
distribution is of order 6-8; and the evolution time scale is of order 8-8. The importance 
of these scalings is that  they represent the most complicated possibility with respect 
to  the several physical mechanisms retained. Thus, for a reasonably wide parameter 
range we can assert that no significant terms are neglected though some numerically 
small terms may be retained. 

It is important to check that the maximum-generality scalings do represent a 
physically realistic possibility, as otherwise the increased range of validity may be 
illusory. For a shallow river a feasible specification is 

llull = 0.1 m s-l, H = 2 m, B = 50 m. 

The implied scales for the other major physical parameters are 

eddy diffusivities N 0.04 m2 s-l, 
total weight deficit (or excess) due to the contaminant N 12.5 tonnes. 

length N 250 m, 

These values, in particular those for the eddy diffusivities, are realistic. Of course, 
the precise matching of the mass deficit, length and breadth scales is exceptional. 
I n  general, as a contaminant cloud evolves different terms in the maximum-generality 
equation will be negligible. 

I n  axes moving a t  velocity //u(O)JJ, and with the relative sizes of terms made explicit, 
the equations of motion (4a-f)  can be rewritten: 

S28,C -I- d(U - / /Uco)l / )  a,C + 6&,C + &Wa,C = a,(K3 a,C) + a2 a,(., a, C )  + 0(S4), ( 6 ~ )  

S(u- Ilu(o)II)axu+Sva,u+Swa,u-G+Sa,p = a,(v,,a,u)+O(8~), ( 6 b )  

S(U- liuqi) a,v+sq,v+swaz,v+a,p = a,(v,,a,q +o(sz), ( 6 c )  

a,p - agc = 0 ( & 2 ) ,  ( a 4  
a,u+a,v+a,w = 0, (6e) 

u = v = ~ = ~ , a , c = O  on z =  -h, ( 6 f  I 
v12a,u = = w = K,~,c  = 0 on z = 0, ( 6 9 )  

Ri = aga,c/[(a,u)2 + S ( ~ , W ) ~ ]  with K~ = K ~ ( R ~ ) ,  vij = v i j (R i ) .  (6h)  

A nice feature of these non-dimensional equations is that  we can revert to dimensional 
variables simply by setting S = 1 and re-interpreting the symbols as their dimensional 
counterparts. 

Superficially there is a resemblance to the equations (1 a - g )  used by Smith (1976)  
in a study of the far field. This resemblance is primarily due to the similar physical 
context. It rapidly becomes apparent below that the differences in scalings for 
middle-field and far-field problems lead to mathematical changes commensurate 
with the physical changes. 
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3. Regular expansion 
It is implicit in the above choice of scalings that all the flow variables havederivatives 

of order unity with respect to the scaled (non-dimensional) co-ordinates x, y, z and t .  
Thus any dependence upon the small parameter 6 must be regular. The form of (6) 
reveals that the appropriate representation of the flow variables is 

u = u(0 )  + &(1) + 62u(2) + . . . , 
where the u(j) are all independent of 6. We now follow through the consequences of 
this simple representation, which lead eventually to a single equation involving only 
d o ) .  

Since our interest is primarily in the contaminant dispersion, a central role in the 
calculations is played by the diffusion equation ( 6 a )  together with the zero-flux 
boundary conditions. At leading order in 6 there is the trivial solution 

d0)(x, y, t )  independent of z ,  ( 7 a )  

and without loss of generality d o )  can be identified with the vertically averaged con- 
centration IIcII. At the next order the convective derivatives of c provide forcing terms. 
A necessary condition for a solution to exist is that these terms have zero vertical 
average. It can be verified, using the results given below, that this integrability 
condition is automatically satisfied. The solution is 

the z-independent term 8) being so chosen that dl) has zero vertical average. At 
order S2 the forcing terms are more complicated. The integrability condition is that  
llcll satisfies the evolution equation 

3, llcll+ 11~(1)11% llcll+ l l ~ ( l ) l l ~ u  llcll+ a, II WO)- l l~(o) l l )~( l ) l l  + ~u(ll~(o)c(l)ll - IIKC)Ilau Ilcll) = 0, 
( 7 c )  

where 1 1  ...[I indicates a vertical average. To evaluate the coefficients in terms of llcll 
we need to solve the equations of motion (6b-h). 

To the first approximation the gradient Richardson number ( 6 h )  is zero and the 
eddy diffusivities K\O) and are those pertaining to homogeneous flows. Thus the 
basic longitudinal current is unaffected by the contaminant: 

u(O)(z) = G I 2  ( - ”’dz’, independent of x and y . (8a )  

The solution of the remaining leading-order equation, as obtained by Prych ( l 9 7 0 ) ,  
gives a description of the buoyancy-driven lateral secondary flow : 

- h  v13 

26 F L M  90 
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Here the constant $ is so chosen that the stream function $ is zero at the free surface. 
The correction ,uC to the y-independent pressure gradient arises because when there 
is vertical stratification (and reduced drag) the total flow along the channel can be 
maintained by a reduced longitudinal pressure gradient. 

Since we are concerned with only weak stratification, i t  sufices to use a linear 
(Taylor’s series) approximation for the change in the eddy viscosity. As is revealed 
in figure (2.14) of the Delft Hydraulics Laboratory literature survey (Brewers 1974), 
there is wide scatter in the available data. Here we use the formula (attributed to 
Vreugdenhil) 

which is a reasonable approximation for RP) c 0.25. Other empirical formulae, 
attributed in the Delft survey to Nelson and to Munk & Anderson, yield linear coeffi- 
cients -Q and - 5 respectively. Evaluating Ris by means of the results (6h) and 
(7b) ,  we find 

v $ i ) / y y J  = -YRiCU, 

Proceeding to the order-6 terms in the longitudinal momentum equation (6b), we 
obtain 

u(l) = aga, I l C l I ~ l ( Z )  + llc11)2 U2(Z) +a9 a; I lCllU3(Z) + P ( O ) ( Z ) ,  

where p(x, t )  is so chosen that the perturbation longitudinal current u(1) makes no net 
contribution to the volume flux along the channel, and the functions U,(z) are defined 
as 

We observe that Ul can be associated with a combination of a longitudinal density- 
driven current and the reduction in turbulent intensity due to the part of the vertical 
stratification that is induced by the longitudinal density gradient, that U2 is related 
to the corresponding transverse-induced turbulence reduction and that U3 represents 
the vertically transported longitudinal momentum due to the secondary flow. 

There is no need for us to pursue the further details of the second-order solution, 
because the vertically averaged velocity perturbations Ilu(l)I) and lldl)ll are related via 
a stream function : 

hllu(l)JI = a, @, hl(dl)ll = - a X @ .  ( 9 4  4 
From the above expression for u(l) in terms of U,, U2 and U3 we can derive a correspond- 
ing expression for ,u and hence for @: 
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Here y = y- is the left-hand side of the channel (viewed from upstream) and the 
overbars denote cross-sectional average values. Without loss of generality we have 
chosen to set 0 equal to zero a t  the two side walls. For an infinite channel it suffices 
that we take y- = --co and neglect the averaged terms. The marked similarity be- 
tween the first term in the expression (9a) for U, and the equation (8e) for @ means 
that the contribution to IIUlll from the longitudinal density-driven current is zero 
unless the eddy viscosities vi;) and vL0i for longitudinal and lateral flows have different 
vertical variation. 

The inclusion of h factors and some integrations by parts with respect to z enable 
us to rewrite (7 c) : 

+a,(hllazc(qz - h  w"dz~l+hIIK(zO)lla,Ilcll). 

Eliminating 
coefficients 

and do) by means of (7 b )  and (8 b ) ,  we are led to define the dispersion 

Thus, with respect to axes moving with the bulk velocity I lu(O)jJ,  the contaminant dis- 

The formulae for the longitudinal and lateral dispersion coefficients E and K agree 
with the work of Elder (1959) and of Prych (1970) respectively. Moreover, as was 
noted in the introduction, ( 1 )  has the correct limiting form when the dispersion is 
predominantly along or across the flow. Although the present analysis is restricted 
to channels of constant depth, the results (9f) and (1) indicate the way in which 
variations in depth can be expected to modify the equations. 

4. Logarithmic velocity profile 
If we are to obtain quantitative results then it is necessary to specify the vertical 

structure of the eddy diffusivities v\\), vi0i and KLO),  and to determine the many coeffi- 
cients involved in (9f) and (1). The simplest possibility, as considered by Prych 
(1970), is to use a depth-averaged (quasi-laminar) value of the diffusivities. Here we 
follow Elder (1959), and use a more realistic model which corresponds to the basic 
velocity profile being logarithmic. In  this model the diffusivity distributions for the 
vertical transports of momentum and concentration are parabolic : 

vi;) = u* h&( 1 - q )  q, where q = (h + z)/h, (114 
26-2 
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with similar formulae for v',91 and K&O). Here vi3 is a dimensionless constant and u* is 
the friction velocity. Later in this section we invoke a stronger form of the Reynolds 
hypothesis and take the diffusivities v$, v& and K ~ O )  all to be equal. 

We notice that the diffusivity tends to zero as the channel bottom is approached. 
If this were strictly the case then singularities would arise owing to the occurrence of 
diffusivities in the denominators of many of the above integrals. A correct method to 
resolve the singularities is to recognize that there is a thin laminar sublayer in which 
the eddy diffusivities remain non-zero. In  the context of present study, it can be shown 
that the results are insensitive to the details of the sublayer. Thus it suffices to  take 
an algebraically convenient model. Here we choose to apply the bottom boundary 
conditions a t  the displaced position 7 = 7 *, where 

This definition ensures that ( I u ( O ) I )  is equal to the vertical average of do) over the slightly 
reduced region 7* < 7 < 1. We observe that ?* is exponentially small with respect to 
that small parameter U , / ~ ~ U ( ~ ) ~ ~ .  Thus we shall neglect powers of 7*. The fact that the 
final results do not depend upon 7* is related to the unimportance of the details of 
the sublayer. 

By definition, the friction velocity u* is related to the pressure gradient G: 

G = u$/h. 

Thus equation ( 8  a )  for the undisturbed longitudinal velocity yields the anticipated 
logarithmic profile 

do) = ( U * / 4 3 ) 1 n  (7/7*) 

= Ilu(o)It + @*/vi3) ( 1  +In71 + W*)* ( 1 2 4  

The other major formula (8e) for the leading-order flow becomes 

where in accord with the above prescription further terms involving powers of r,~* 
have been neglected. 

For future reference we note that the gradient Richardson number, as defined by 
(6h) ,  is given to the first approximation by 

This expression enables us to check whether the vertical stratification is consistent 
with the use of a middle-field model (e.g. Ri < 0-25).  

Using these results ( 1 2 a ,  b )  in the integrals (9a ,  b, c )  for the horizontal circulation 
coefficients Ui, we obtain 
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Similarly, for the dispersion terms we find 

Conveniently, the only non-elementary integral is the one evaluated by Elder (1959) 
and it is this that gives rise to the decimal terms. 

To complete our determination of the coefficients in the dispersion equation we 
need to know K;,  vi3, v,$ and I I K ( ~ ~ ) I I .  For a variety of experimental results (Fischer 
1973), a reasonable specification is 

(15) 
I I  

K~ = v13 = vL3 = 0-4, l l ~ k ~ ) I I  = 0*15hu,. 

The slight uncertainty in these values means that it is adequate to retain only the 
leading term in (13) and (14). Thus we arrive at  the results for the coefficients (2a-d) 
quoted in the introduction to this paper: 

E = 6*3hu,, D, = 0.98h3aga, I I c ~ ~ / u * ,  
K = 0.15hu, + 0*16h5(aga, I ~ C / ~ ) ' / U $ ,  

The numerical factor 6.3 in the longitudinal dispersion term is slightly greater 
than the value 5.9 given by Elder (1959), owing to his using the larger value 0.41 for 
the von Karmhn constant. On the other hand Prych (1970) uses the smaller value 
0.38, but his result 0.052 for the nonlinear lateral dispersion coefficient is considerably 
reduced from the present estimate 0-16. Indeed, for the same specification of the 
turbulence the ratio of the D,  coefficients for logarithmic and parabolic velocity 
profiles is 70: 19. 

The explanation for this considerable change lies in the repeated occurrence of 
the diffusivities in the denominators, which gives emphasis to those regions of the 
fluid with low diffusivities. Experiments performed by Ippen, Harleman & Lin (1960) 
with an externally imposed uniform turbulence field gave dispersion rates only 
marginally less than Prych's theoretical results. However, in Prych's own experi- 
ments there was no external turbulence source and his figures (4.3a, b )  reveal that 
the velocity profile was logarithmic to a high degree of accuracy. Thus, with the 
advantage of hindsight, we can explain why his theory gave considerable under- 
estimates of the dispersion. 
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5. Simplified dispersion equation 
The single equation (1) in two spatial dimensions is a considerable simplification 

from the eight equations (4a-h) in three spatial dimensions. Furthermore, with re- 
spect to the middle field the loss of generality has been minimal. However, the model 
equation is more complicated than we might have anticipated. The reason for this 
is that not only are there terms corresponding to each physical effect, but there are 
also some combination terms. For example, the term most naturally associated with 
the vertical shear of the primary current is the longitudinal dispersion coefficient E. 
Yet (9a )  and (lob) reveal that  ~ ( 0 ) -  ~ ~ ~ ( 0 ) ~ ~  is also involved in the two further terms 

After a sufficiently long time the density gradients become negligible and the con- 
Il~lll and Dl. 

taminant distribution evolves according to the linear diffusion equation 

a,(hllcll) = a,(hEa, llcll) + a,(hDoa, Ilcll). 

For practical purposes it often suffices to know how rapidly the nonlinearity vanishes 
and how the eventual linear solution differs from a global linear solution (e.g. the 
excess variance due to buoyancy). Because the contaminant distribution is continually 
widening, the largest influences upon the asymptotic solution are due to the last 
significant nonlinear effects. One means of addressing this problem is to  seek non- 
linear corrections to the final approach to normality (Barton 1976; Smith 1978). 
In  this section we seek instead a simplified dispersion equation which retains the last 
nonlinear effects (on the premise that the nonlinearity persists into the middle field). 
To do this we interpret u,/JIu(O)II as a small parameter, and ascertain the maximum- 
generality scalings. For Prych's (1970) experiments the range of values for this 
parameter is from 0.047 to 0.10 depending upon the flow conditions. 

As in 9 2, we take H and JIu(I to be the basic dimensional quantities. Suppose that 
the reduced gravity and the longitudinal and transverse gradients have the following 
sizes : 

where the exponents G, L and W connote gravity, length and width. Thus the ex- 
ponents of the U,, U,, U,, E, D,, Do and D, terms in ( 1 )  are 

2L - G- 1, L+ 2 W - 2G- 3, L+ 2 W -G-  2, 

2 L - N + 1 ,  L + 2 W - G - l ,  2 W + I ,  4 W - 2 G - 3 ,  

respectively. Here the extraneous exponent N allows for the fact that the numerical 
factor 6.3 in the longitudinal dispersion coefficient (2a )  is more than forty times as 
large as the numerical factor 0.15 in the lateral turbulent diffusion coefficient (15). 
The final simplified model equation will include those terms with the lowest exponents 
(i.e. the formally largest terms). 

By hypothesis, the lateral turbulence and secondary flow terms must be included 
[i.e. the features of Prych's middle-field equation (3)]. This implies that  

G =  W - 2  
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and the relative exponents of the respective terms in (1) can be written as 

2L--3W, L - 2 W ,  L-  W-1, 

2L-2W-N,  L - W ,  0, 0. 

The second, third and fourth exponents are zero provided that we choose 

@ = - I ,  L = 2 ,  W = I ,  N = 2 ,  
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and the remaining exponents are positive. The importance of these scalings is that, 
subject to  u*/llull being small, they lead to the retention of the maximum number 
of physical effects. 

The resulting dispersion equation, in axes moving a t  the bulk velocity ~ ~ u ( ~ ) ~ ~ ,  is of 
the form 

at(hllcll) + a , @ 4  llcll -%@a, llcll = %(hEaz Ilcll) + a , ( w o +  (@, IIc11)2D21 a, Ilcll) (16a) 

with 

The expressions for the coefficients E ,  Do, D,, llUzll and IlU311 can be obtained by com- 
parison with the full equations (1) and ( 2 a d ) .  It happens that the simplifications 
have led to the deletion of the interaction terms noted in the first paragraph of this 
section. Thus there is a one-to-one correspondence between the major physical effects 
and the coefficients in ( 1  6a,  b ) .  E is associated with the vertical shear of the longitudinal 
current, Do with the lateral turbulent diffusion, D, with the vertical shear of the 
buoyancy-driven secondary flow, llU,ll with the turbulent drag reduction due to the 
weak vertical stratification, and IlU3(/ with the redistribution of longitudinal momen- 
tum by the secondary flow. 

Using the above scalings, we find that the estimate (12c) of the gradient Richardson 
number can be simplified to 

where 7 ranges between 0 and 1 .  

6. Comparison between theory and experiment 
Intuitive arguments, as presented in the introduction, suggest that for a light 

contaminant (i.e. ct positive) each of the terms in the dispersion equation (1) tends to 
increase the rate of spreading. Here, for the simplified equation (16), we give analytic 
confirmation of those conclusions. The specific case which we study is a steady plume 
in an extremely wide constant-depth channel. Thus we can test these theoretical 
predictions against Prych's experimental results. 

The method used has its basis in the recent work of the author (Smith 1978). There 
it is shown that if a contaminant distribution is represented in terms of its cumulants 
u,(z), viz. 
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then the He, coefficient of the dispersion equation yields an evolution equation for 
the variance a2(x). Here the source strength Q is the rate at which weight deficit 
(or excess) is being discharged into the stream and the He, are Hermite polynomials 
defined by 

He, ( Y )  exp ( -  +Y2) = ( - d / d  Y),exp ( -  i Y 2 ) .  

The major mathematical difficulty is to calculate the coefficients a,(x) (Smith 1978). 
However, we can infer that far downstream the cumulants tend to zero, and therefore 
a reasonable approximation to the equation for a 2  can be obtained by neglecting all 
the cumulants. In  this Gaussian approximation we can explicitly evaluate the integral 
and derivative terms in (16), and it is straightforward to  determine the corresponding 
He, coefficients. 

With respect to stationary axes, the resulting equation for the variance u2(x)  is 

Since the coefficients D,, llU,ll and IlU311 are all positive [see (14c) and (13b, c)], it 
follows that for light contaminants (i.e. with Q positive) the secondary flow, the 
turbulence reduction and the redistribution of longitudinal momentum all enhance 
the dispersion. On changing the sign of Q we find that the IlU311 term is reversed and 
tends to reduce the dispersion. Thus, in qualitative agreement with Prych’s (1970) 
experimental findings, we predict that dense contaminants are dispersed more 
slowly than are light contaminants. 

Following Prych (1970), we can make our results non-dimensional by introducing 
t,he dimensionless variance V, distance downstream X, source width B and source 
strength S:  

v = -  a2 x=- XDO B = -  b S = -  lQlh 
h2 ’ h2 (Iu(O) 1 )  ’ h’ 02, l l u ( O ) l l *  

A useful by-product of non-dimensionalization is that it leads to a standard form for 
the variance equation (17) .  If, as in Prych’s experiments, there are a number of different 
flow conditions then a standard form permits us to define a meaningful ‘averaged’ 
equation. Using ( 1 3 b ,  c), (14a, c) and Prych’s results for the flow and turbulence 
properties, we obtain the averaged coefficients 

8 2 .  (18) 
1.59 x 104S2 5.82 3-16 x 105 

v2 * V2 

Here the choice of sign for the momentum redistribution term depends upon whether 
the contaminant is dense or light. 

The corresponding formula for the zero moment of the gradient Richardson number 
across the plume is 

Here the averaging is vertically, laterally and with respect to the different flow 
conditions. By comparing the sizes of terms in the variance equation (18) with the 
expression (19)’ we see that the contaminant dispersion can be extremely nonlinear 
before the averaged Richardson number becomes too large for the consistency of a 
middle-field model (i.e. a model based upon the assumption that there is nearly 
complete vertical mixing). 

Ria, = 6.02 x 10-’S2/V2. (19) 
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A phase-plane analysis of (18) reveals that while the d V / d X  coefficient is negative 
there is extremely rapid growth of the variance. Once this coefficient has changed 
sign the solution closely follows that of the first-order equation, in which the d2V/dX2 
term is neglected. Thus a simple and accurate means of approximating the solutions 
of (16) is via the implicit solution of the associated first-order equation: 

1.59 x 10-682 + 5.82 ;iO-48] [ 3.16 x 10-682]-1dv. 
(20a) 

Here the starting position for the integral is the larger of the actual variance a t  the 
discharge &B2 and the unique positive root of the equation 

x =IF; [ l -  V2 - 2 +  v2 

1 - 1-59 x 10-B82VT-2 f 5.82 x 10-48v-3 = 0 (20b) 

(i.e. the sign change for the d V /dX  coefficient). This procedure implicitly assumes 
that any stratification-dominated near field does not extend far downstream and does 
not greatly contribute to the variance. 

For large values of V the result (20a) asymptotes to 

1.74 x 10-682- 5.82 x 

+ v+ x $17- V d - s ,  [ v, 

while the solution for a neutrally buoyant discharge is 

At a large distance downstream of the outlet the difference between the alternative 
results for the variance is 

(21) 
1-74 x 1 0 - 5 8 2 -  5.82 x 10-4 1-58 x 10-51-1~~ .  

0% - M2) +Im V O  [ v2 + v+ ] [ I +  v2 

Figure 6 compares this theoretical prediction for the excess variance due to buoyancy 
with Prych’s (1970) experimental results for dense contaminants (i.e. with the minus 
sign). 

Prych’s experiments extend to strongly stratified cases (see the vertical concen- 
tration profiles in his figures 4.5 and 4.6). A generous upper bound for the applicability 
of the present theory is that the averaged Richardson number should be less than 
0.25 a t  the discharge. For the four dimensionless source widths 0.1, 3.08, 4.94, 27.7 
the respective upper bounds for the dimensionless source strength are 

0-53, 510, 1300, 41000. 

Outside these bounds the theory underestimates the dispersion by as much as 40%. 
For wider, less buoyant plumes there is good agreement between theory and experi- 
ment. 

The relative sizes of the terms in (21) permit us to ascertain which of the three 
retained buoyancy effects is dominant. Appropriately, many of Prych’s experiments 
concern situations in which secondary flow is the main mechanism. Thus, using the 
Erdogan-Chatwin equation (3) with the value of D,  derived in the present paper, 
the author (Smith 1978) has obtained results which closely resemble figure 6. The 
additional physical effects included here reduce the dispersion for small S and slightly 
increase the dispersion for large S. 
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experimental results. 
6. Comparison between the present theoretical and Prych’s (1970) 
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